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ABSTRACT

Texture modeling and separation of structure in images
are treated in synergy. A variational image decomposition
scheme is formulated using explicit texture reconstruction
constraints from the outputs of linear lters tuned to different
spatial frequencies and orientations. Relevant to the texture
image part information is reconstructed using modulation
modeling and component selection. The general formulation
leads to a u + Kv model of K + 1 image components, with
multiple texture subcomponents.

Index Terms— texture, image decomposition, variational
methods, PDEs, modulations, reconstruction

1. INTRODUCTION

Texture in images coexists with geometric macrostructures
such as contours, shapes and boundaries, or is embedded in
coarser structures formed by lighting and shading conditions
or smooth area/volume variations. Image decomposition
refers to separating an image in conceptually and theoreti-
cally different components, primarily under two perspectives
i) addressing content-speci c vision applications (e.g. sep-
arate structure and detail analysis) and ii) studying image
pattern formation. Decomposition approaches include image
diffusions and simpli cations [1], wavelet projections [2, 3]
and representations in bases [4] or non-linear ltering of the
bilateral [5] or morphological, leveling type [6].

In the f = u + v decomposition models, an image f , is
treated as the sum of two independent components: a piece-
wise smooth function u with quasi- at intensity plateaus and
jump discontinuities, the ‘cartoon’, that contains geometric
structure information (edges, contours, large-scale features
and illumination effects) and a small-scale oscillatory func-
tion v that captures texture and possibly noise (Fig. 1). In-
verse methods have been proposed for image decomposition
in structure u plus texture v components [7, 4, 8, 6]. The
texture component can be used for solving texture-depended
problems (classi cation, surface analysis, shape/orientation
from texture), while the structure part for feature detection,
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segmentation, shape analysis and object recognition. Image
decompositions have motivated solutions to classic problems
like image restoration, segmentation, matching, classi cation
and compression by adapting algorithms for the two compo-
nents, in addition to emerging applications like image inpaint-
ing [9] or computational photography [5].

Building on the u + v image models, a decomposition
scheme is formulated as a constrained total variation mini-
mization problem. An explicit model prior is included on the
constructed functional, through a term penalizing dissimilar-
ity between the texture part and a reconstruction from a sum
of narrowband image components. Such components reside
in multiple frequencies and orientations, and are further mod-
eled by spatial amplitude and frequency modulations of the
image function [10, 11, 12]. The texture constraint is thus
derived from the responses of Gabor lters and a component-
amplitude weighted image reconstruction. The developed
scheme is shown to be a special case of a decomposition in
K + 1 components.

2. BACKGROUND

2.1. Image decomposition

Estimation from an image f : Ω ⊂ �2 → � of the compo-
nents u, v is posed in the variational paradigm [1, 7, 9, 13, 8],
as a minimization of general convex functionals of the form

inf
(u,v)∈(U×V )

{E(u, v)=J(u)+λF (u, v)+μL(v)} , (1)

where U, V ⊂ Ω and λ, μ ≥ 0 tuning constants. The rst,
regularizing term is normally the Total Variation (TV) norm
J(u) =

∫
Ω ||∇u||dxdy. A second, delity term F (u, v) =

||f −u− v||2X penalizes the approximation of f by u+ v and
L(v) is a metric of texture variations in a normed functional
space. The decomposition coef cients λ, μ control respec-
tively, the amount of detail in u, i.e. scales larger than 1/λ,
and the amount of variation in v.

The texture component, de ned by Meyer in a space of
oscillating functions v = div(�g) = ∂1g1 + ∂2g2, where
g1, g2 ∈ L∞(�2) [3], was approximated computationally by
Vese and Osher [7] using Sobolev norms Lp, 1 ≤p≤∞. The
formed functional

E(u,�g)=
∫

Ω

(‖∇u‖+λ|f−u−div(�g)|2)dxdy+μ‖�g‖p (2)
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(a) Image (b) ‘Cartoon’ (c) Texture (d) Image dominant component

Fig. 1: Painting (a) is a mixture of geometric structures (‘cartoon’) and textural patterns (“The Starry Night”, Vincent van Gogh, 1889).

with (u, v) ∈ BV ×Lp, leads to a three-part model where
the residual w = f − u − v giving image noise. Aujol and
Chambolle [13] used the exact de nition of Meyer’s texture
norm ‖ · ‖G and the indicator function of the set ‖v‖G ≤ μ as
a constraint. A two-part decomposition, selective to texture
frequency and orientation was proposed by minimizing the
projection of v = f − u onto prede ned Gabor wavelets [8].

2.2. Texture modeling

Texture variations are described in the multiple lter model
by a set of narrowband signals, of highly concentrated spatial
frequency content, that account for texture periodicity, direc-
tionality, spatial extent and scale [2]. A wideband image may
be decoupled to such components in the output of a Gabor
lterbank, covering densely the frequency plane [11].

Narrowband texture components are modeled in the AM-
FM framework [11, 12] by nonstationary amplitude and
frequency-modulated sinusoids

tk(x, y) = αk(x, y) cos(�ωk0 · (x, y) + φk(x, y)), (3)

where the amplitude modulating signal αk(x, y) accounts for
the component spatial extend and local contrast and the in-
stantaneous frequency vector �ωk(x, y) = ∇φ(x, y) for the
local scale and orientation. Demodulation of the components
in the amplitude and instantaneous frequencies is estimated
by energy ratios via the energy separation algorithm [10] and
a regularized version of the image energy operator Ψ(tk) =
Ψ(t ∗ gk) = ‖tk ∗∇gk‖2− (tk ∗ gk)(tk ∗∇2gk), where gk the
response of the k-th Gabor lter channel [12].

The texture dominant component [11], is a locally nar-
rowband in space, smoothly varying function d(x, y) =
αd(x, y) exp{jφd(x, y)}, derived by reconstructing the im-
age at each x = (x, y) from a single component (3)

d(x)={ti(x) : i(x)=arg max
k

{Γk(x)}, k∈ [1, K]}. (4)

Function d maximizes an energy criterion Γk(x, y) which is
either the channel amplitude envelopes |αk(x, y)| [11] or the
complex energy operator response Ψ(t∗gk)(x, y) (Fig. 1(d)).

3. A DECOMPOSITION SCHEME USING TEXTURE
MODEL RECONSTRUCTION

Consider a mapping the initial image f �→ t ∈ L2(Ω) and
its narrowband components tk from a set of frequency-tuned
functions {gk, k ∈ {1 · · ·K}} ∈ L2(Ω). Texture modeling
and content decomposition are integrated through the con-
strained minimization functional

E(u, v)=
∫

Ω

(‖∇u‖+ λ|f − u− v|2 + μ|v −
K∑
k

tk|2) (5)

where u ∈ BV (Ω) and v belongs to to a Hilbert space v ∈
H(Ω). The texture constrain term requires v to be close,
in the L2 sense, to a reconstruction by a set of narrowband
components tk, whose parameters (localization, tuning, band-
width, maximum number) are controlled by the gk functions.
The problem is then to select the mapping of f and a sub-
set of the K components, appropriate to reconstruct texture-
speci c information. For example, if t = f and gk are Gabor
functions, tk are the narrowband components of f , given by
tk = (f ∗ gk)(x, y).

One option for the reconstruction sum would be to omit
the lower-frequency components from the responses to a l-
terbank gk, below a certain scale, by considering a partition
of scales, in small, texture-important and large, structure-
important ones. Unless an ef cient, spatially-adaptive scale-
selection mechanism is used, this would require a heuristic
threshold selection, possibly trained in a large set of images.
As opposed to keeping the ner scales (spectral selection),
we propose an automatic, energy-based selection using mod-
ulation modeling [14].

Bearing in mind that narrowband image components con-
tain contributions by both the texture and non-texture image
part, i.e. fk = u ∗ gk + v ∗ gk, we wish to suppress u in the
reconstruction sum. The ltered component amplitude enve-
lope is used for that purpose as a spatially adaptive measure-
ment to weight the responses. Then, the reconstruction sum
results in a weighted average component

K∑
k=1

tk �
∑

k

αk(f ∗ gk)∑
k αk

. (6)
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(a) Image (b) Reconstruction (c)Dom. component

Fig. 2: Reconstruction by amplitude-weighted component sum
(K = 32) (b) and energy dominant component (c), from 32 Ga-
bor lters (4 scales, 8 orientations).

The amplitude αk(x, y) attains large values in highly con-
trasted regions that signify large oscillations tuned at the com-
ponent frequency and orientation, and small in smooth areas.
An example of that effect can be seen in Fig. 2. TInterestingly,
the normalized weights α2

k/
∑

k α2
k approximate the analysis

by dominant component (4), for if ∀(x, y) ∃k : αk(x, y) �
αk′ , ∀k′ �=k, then tk is the texture dominant component [14].

3.1. Solution and PDEs

The gradient-descent ow solution that minimizes the func-
tional (5) E(u, v) =

∫
Ω Φ(u, v, ux, uy)dxdy is given by the

pair of Euler-Lagrange equations

∂u

∂t
+ u = (f − v) +

1
2λ

div
( ∇u

|∇u|
)

, (7)

∂v

∂t
+ v =

λ

μ + λ
(f − u) +

μ

μ + λ

K∑
k=1

tk, (8)

(u, v)(x, y, 0) = (f, 0), ∂u/∂ �N = 0, u ∈ ∂Ω

where �N is the outward unit normal on the boundary ∂Ω and
κ(u) = div (∇u/|∇u|) the level curvature of u = u(x, y).
From the steady-state solutions

u = f −
K∑

k=1

tk +
μ + λ

2μλ
κ(u), (9)

v =
1

μ + λ

(
λ(f − u) + μ

K∑
k=1

tk

)
, (10)

we observe that a) the texture component is the residual of
the ROF model [1] enhanced by the reconstruction sum and
b) as the residual f−∑

k tk, approximates the lowpass image
component g0 ∗ f where g0 a Gaussian, the cartoon (9) is ap-
proximately u ≈ g0 ∗f +λ′κ(u), i.e. the large-scale intensity
variations plus a curvature-based edge regularization.

A xed point (Gauss-Seidel) iteration numerical scheme
is used to solve (9, 10), with a discretization similar to [7]
(symmetric nite differences for derivatives with the most
recent un value used at each point and a discrete curvature
κn(un, un+1)). At step n + 1 the cartoon estimate is

u(n+1) = f −
∑

k

t
(n+1)
k + νκ(n)(u(n), u(n+1)) (11)

where ν = (μ+λ)/2μλ, with an analogous v(n+1). Iterations
stop when changes in the values of the estimated components
are small.

3.2. Extension to a general u + Kv model

Generalizing the decomposition problem (5), we consider a
model f = u +

∑
k vk that associates texture with a set of

frequency-localized narrowband subcomponents vk. This u+
Kv model is the minimizer of functional

E(u, {vk}) =
∫

Ω

(‖∇u‖+λ|f−u−v|2)+μ

K∑
k

∫
Ω

|vk−tk|2

(12)
where k ∈ {1, K} and (u, {vk}) = (u, v1, · · · , vk) are K+1
unknown variables. Minimization by Euler-Lagrange results
in the set of K + 1 steady-state equations

u = (f −
K∑

k=1

vk) +
1
2λ

κ(u) (13)

vk =
λ

μ
(f − u−

K∑
k=1

vk) + tk, k ∈ {1, K}. (14)

The texture component v is further reconstructed by summing
up the K individual subcomponent equations (14)

v =
K∑

k=1

vk =
1

μ + Kλ

(
Kλ(f − u) + μ

K∑
k=1

tk

)
. (15)

The solution equations (13, 15) depend only on the recon-
struction sum

∑
k tk. Letting μ � λK , equation (15) gives∑

k vk ≈
∑

k tk, which in a numerical solution (11) can serve
as an update of

∑
k tn+1

k , i.e. by projection at each step n+1
of the most recent texture estimate vn onto the con guration’s
set of lters gk.

4. EXAMPLES

In Fig. 3 we present decomposition by the developed scheme
along with an implementation of the reference Vese-Osher
(VO) model (2), using empirical parameter tuning. The image
in (a) is characterized by oriented, multi-frequency texture ar-
eas and large-scale scene contours. The color image was de-
composed in a simple channel-by-channel manner. The two
cartoons are similar, with clearly visible shapes and smooth
intensity variations preserved. However, more small-scale
features are ‘seen’ by u + Kv as texture, compared to VO
where these are ‘wiped out’ and included in the residual. Fur-
ther, texture oscillations in (c) have a smaller dynamic range,
as opposed to (e) where larger peaks are visible.

5. CONCLUSIONS

The developed scheme is an effort in the direction of inserting
prior texture model information in u+ v models. The scheme
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(a) f (b) u (c) v (d) uVO (e) vVO

Fig. 3: Cartoon and texture components of image (a) by the proposed u + Kv with amplitude weighted texture reconstruction in (b),(c), and
Vese-Osher decomposition in (d),(e). Parameters (λ,μ) = (10, 5) and (λVO, μVO) = (5, 0.1). Decomposition was performed in each color
channel separately and results are displayed as color images. Texture images are displayed added the mean cartoon value (Stanford Memorial
Church (high-dynamic-range image) [5]).

(a) edges{f} (b) edges{u}
Fig. 4: Edges extracted from the initial image in Fig. 3(a) and its
cartoon component Fig. 3(b).

has been applied to content-oriented component processing,
e.g. improved edge detection from u (shown in Fig. 4), im-
age restoration (shown for an ancient wallpainting in Fig. 5),
texture feature extraction from v and texture classi cation
[14]. Future work can be done towards including other model
constraints or focusing on separating more ef ciently texture
from noise in the residuals. Also, extensions of the model are
considered for the treatment of vector-valued (color or com-
plex) images.
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